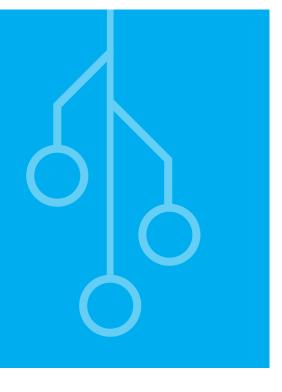
Validation of a Chronic Kidney Disease Risk Score in HIV+ Patients in the U.S.

Anthony Mills¹, Kathy L. Schulman², Jennifer Fusco², Ricky Hsu³, Andrew Beyer⁴, Girish Prajapati⁴, Karam Mounzer⁵, Gregory Fusco²

¹Southern California Men's Medical Group, Los Angeles, CA, USA, ²Epividian, Durham, NC, USA, ³AIDS Healthcare Foundation, Los Angeles, CA, USA, ⁴Merck & Co, Inc, Kenilworth, NJ, USA, ⁵Philadelphia FIGHT, Philadelphia, PA, USA

BACKGROUND


POSTER

#730

- The risk of chronic kidney disease (CKD) increases with both HIV infection and aging, substantially complicating clinical decision-making
- The ability of clinicians to assess CKD risk prior to prescribing antiretroviral (ARV) therapies is constrained by the lack of a widely applicable, easy to calculate, risk assessment tool
- The Data collection on Adverse events of Anti-HIV Drugs (D:A:D) developed and self-validated a CKD risk score in HIV+ patients using data primarily from European and Australian clinical practices and two international clinical trials¹
- There is a great geographic variability in HIV+ patient characteristics, clinical practice and estimated glomerular filtration rate (eGFR) measurement
- Validation of the D:A:D CKD risk score will facilitate identification of HIV+ patients at greatest risk for moderate to severe CKD, information which is a key part of clinical decision-making

OBJECTIVE:

To assess the validity of the D:A:D risk score model for CKD in an exclusively U.S. based cohort of HIV+ patients.

METHODS

Data Source

Observational Pharmaco-Epidemiology Research & Analysis (OPERA) database

- Electronic health records following 78,698 HIV+ patients
- 79 US community-based outpatient clinics in 15 states

Study Population

Epividian_MERCK-CROI-Poster-2018-FINAL.indd 1

- HIV+ adults in the OPERA database with:
 - \geq 1 HIV-1 viral load test and CD4 lymphocyte test in the 12 months on or prior to the date of the first observed eGFR >60 ml/min/1.73 m² test result (index)
 - No previous exposure to potentially nephrotoxic antiretroviral agents (tenofovir disoproxil fumarate, atazanavir, boosted atazanavir, boosted lopinavir, or other boosted protease inhibitors)
 - No history of kidney transplant, dialysis or moderate/severe CKD diagnosis (≥ Stage 3)
 - \geq 3 eGFR measurements on or after baseline
 - \geq 1 eGFR test result >60 ml/min/1.73 m² during observation period
- Baseline: First observed eGFR >60 ml/min/1.73 m² between 1/1/2002 and 12/31/2016
- Censoring: Last eGFR test result, occurrence of the study outcome, lost to follow-up, or study end (07/31/2017)
- 3 validation cohorts were drawn independently using varying methods for calculating eGFR: MDRD, Cockcroft- Gault and CKD-EPI eGFR estimates (Table 1)

CKD Measurement

Outcome

Development of moderate to severe CKD defined as ≥ 2 consecutive eGFR test results <60 ml/min/1.73 m², >90 days apart

D:A:D CKD Risk Score

Statistical Analysis

- - 2. Kaplan Meier probability of progression
- 3. Unadjusted incidence rate ratios (IRR)

Table 1. eGFR Calculation

eGFR=
 Most frequent United States t
+ Used to develo
eGF where SCr =serum crea of SCr /k or 1, and max
+ Validated in se
 Recommended Society (EACS) Improving Gloi
+ Reduced bias a

• GFR is generally estimated (eGFR) from serum creatinine in combination with other factors (Table 1)

• Full and short risk scores calculated by adding coefficients associated with baseline risk factors (Figure 1)

• Coefficients from the D:A:D risk score were directly applied to eligible OPERA patients, but the risk score itself was not recreated and/or recalibrated

• Patients were categorized based on their risk of moderate to severe CKD as:

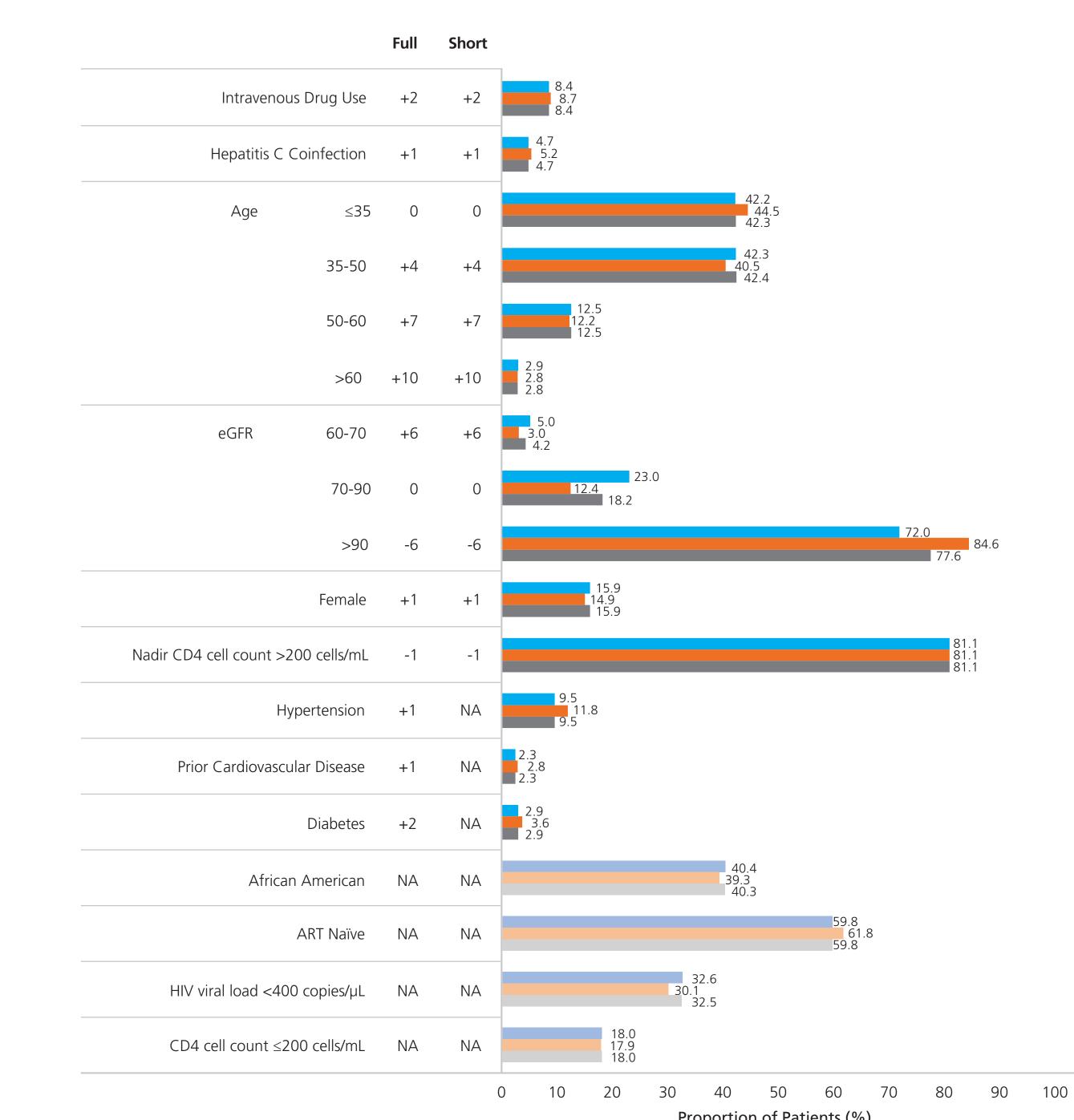
Low risk: score <0</p>

Medium risk: score 0-4

High risk: score ≥5

• The 12-month baseline period preceding the index date was used to assess patient demographics and clinical characteristics

- We replicated the same five metrics employed by D:A:D in their self-validation study¹
 - . Observed crude incidence rates within risk score strata
 - Adjusted IRR (aIRR) from Poisson model associated with a one-point increase in the risk score on CKD incidence
 - 5. Model discrimination (Harrell's c-statistic)


• Since differences in population characteristic can result in a differential incidence of CKD, we focused on incidence-independent metrics (IRR, aIRR, model discrimination) to assess the validity of the risk score

Modification of Diet in Renal Disease (MDRD) =186.3 × serum creatinine ^{-1.154} × Age ^{-0.203} × [0.742 if Female] × [1.212 if African American]							
t method used by laboratories in the to report eGFR	 Developed among persons with eGFR ≤90 mL/min/1.73 m² Not validated among persons with normal kidney function May underestimate higher GFR and thus overestimate CKD incidence (particularly for early stages) Accuracy may vary based on race 						
	Gault (C-G) e) x Weight in kg x [0.85 if Female] 72 x serum creatinine						
op the D:A:D risk score	 Estimates creatinine clearance instead of eGFR (overestimates eGFR) Not adjusted for body surface area or race 						
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), 2009 $FFR = 141 \times \min({}^{SCr}/_{k}, 1)^{a} \times \max({}^{SCr}/_{k}, 1)^{-1.209} \times 0.993^{Age} \times [1.018 if Female] \times [1.159 if Black]$ eatinine in mg/dL, $k = 0.7$ for females and 0.9 for males, a is -0.329 for females and -0.411 for males, min indicates the minimum ax indicates the maximum of SCr/k or 1							
everal populations ed by the 2016 European AIDS Clinical 5) Guidelines and the Kidney Disease, obal Outcomes (KDIGO) at eGFR >60 mL/min/1.73 m ²	- A newer formula incorporating serum cystatin C instead of serum creatinine has been developed and is more accurate						

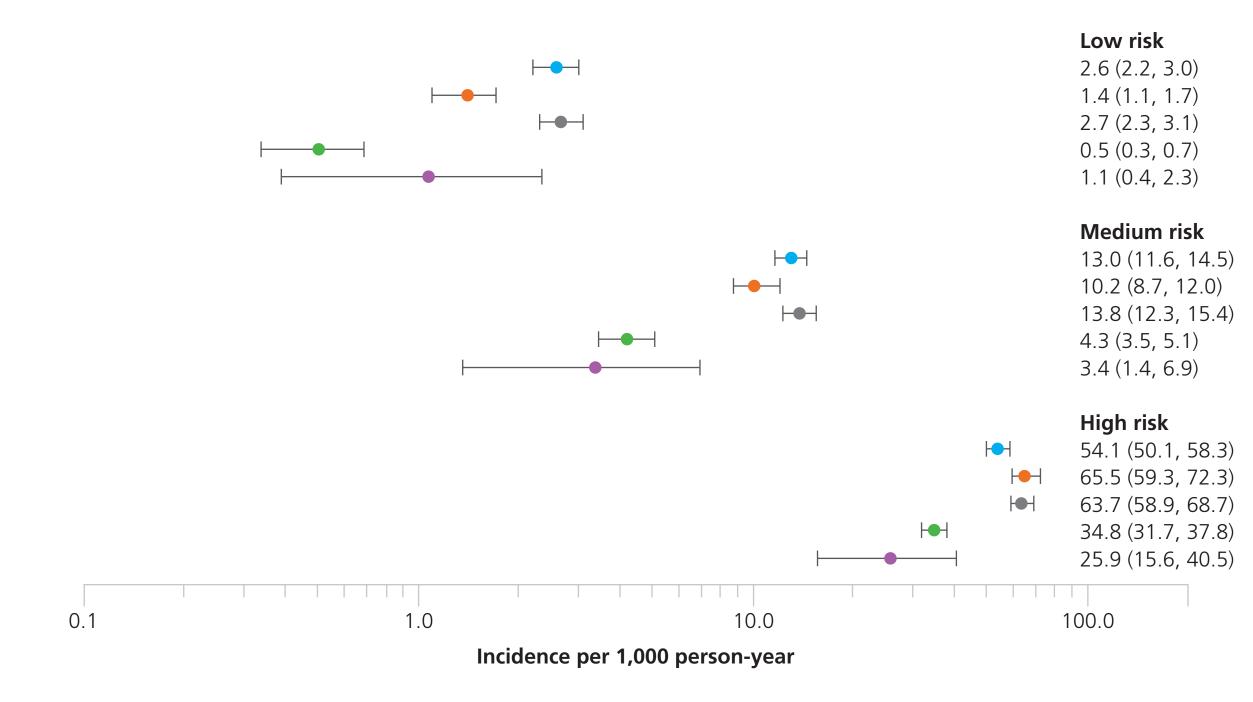
RESULTS

Figure 1. Baseline Patient Characteristics and D:A:D Full and Short Risk Score Calculation, by OPERA Validation Cohort

r shaded bars represent characteristics not included in the D:A:D risk score

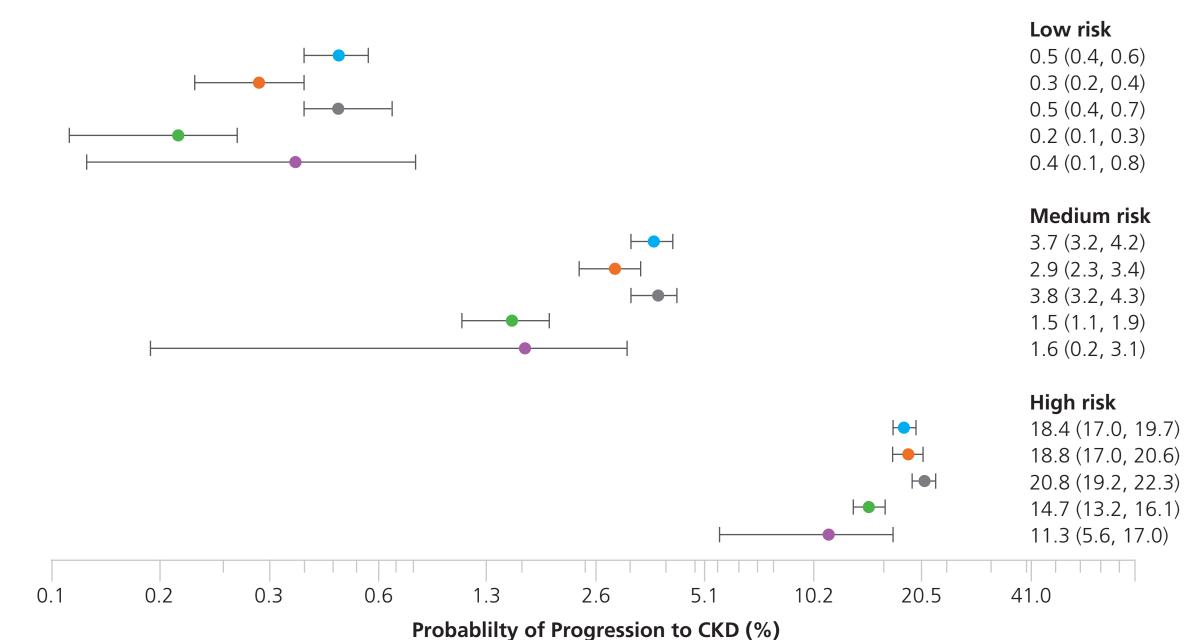
Proportion of Patients (%) MDRD, N=22,748 Cockroft-Gault, N=19,444 CKD-EPI, N=22,727

Table 2. Comparison of CKD Risk Score: Distribution & Discrimination, by Study Population


	OPERA (MDRD)	OPERA (C-G)	OPERA (CKD-EPI)	D:A:D Derivation (C-G)	D:A:D Self-Validation (CKD-EPI)		
Ν	22748	19444	22727	17954	2013		
Full Score							
All Patients, Median (IQR)	-3 (-6 to 3)	-3 (-7 to 0)	-3 (-7 to 1)	-2 (-4 to 2)	-2 (-3 to 1)		
Patients who devloped CKD, Median (IQR)	6 (3 to 10)	7 (2 to 12)	6 (1 to 10)	10 (5 to 14)	9 (0 to 12)		
Harrell's C-Statistic	0.87	0.92	0.88	0.92	0.87		
Short Score							
All Patients, Median (IQR)	-3 (-7 to 2)	-3 (-7 to -1)	-3 (-7 to 0)	-2 (-4 to 2)	NA		
Patients who devloped CKD, Median (IQR)	5 (3 to 10)	6 (1 to 12)	6 (1 to 10)	10 (5 - 13)	NA		
Harrell's C-Statistic	0.87	0.91	0.88	0.91	NA		

• Results for the validation of the full and short risk scores followed similar patterns

• CKD incidence [Figure 2], CKD probability [Figure 3] and incidence rate ratio [Figures 4 and 5] results are presented for the full risk score validation only


Figure 2. Crude CKD Incidence* and 95% Confidence Intervals, by Study Population and CKD Risk Group (Full Risk Score)

*Crude CKD Incidence represents the number of CKD cases observed for every 1,000 person-years of follow-up

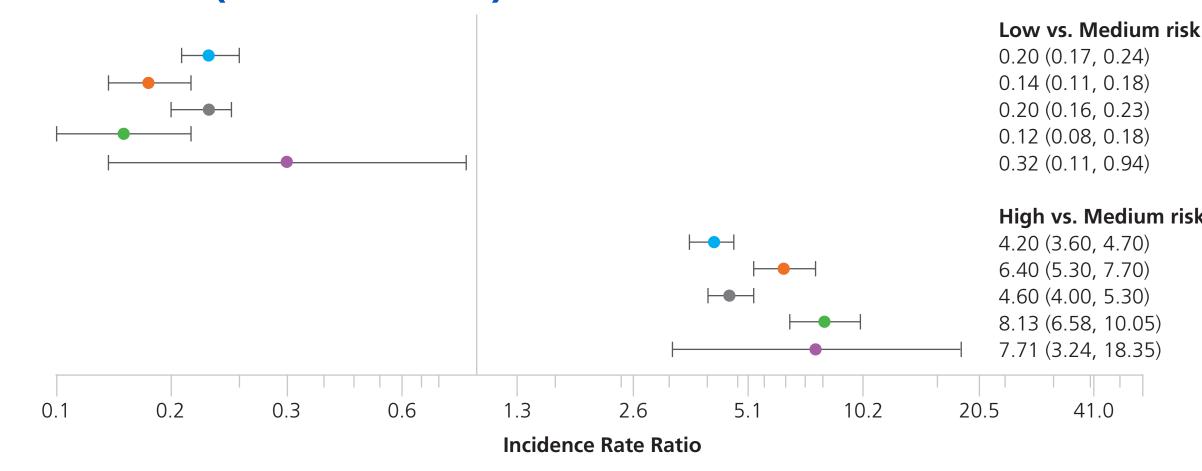
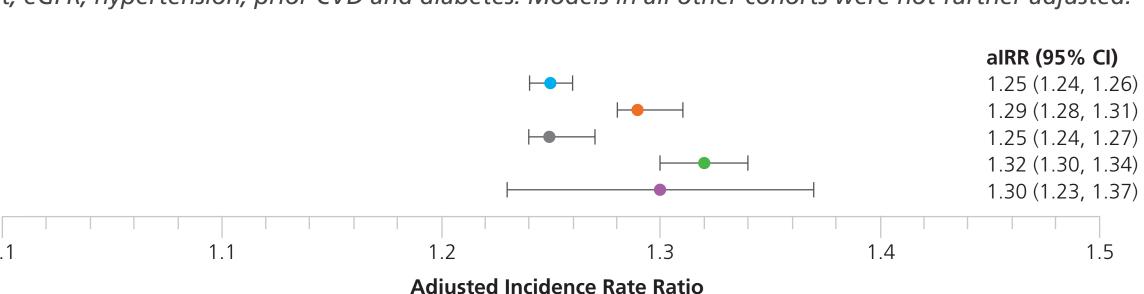

● OPERA (MDRD) ● OPERA (CG) ● OPERA (CKD-EPI) ● D:A:D Derivation (CG) ● D:A:D Self-validation (CKD-EPI)

Figure 3. Probability of Progression to CKD and 95% Confidence Intervals Estimated from Kaplan Meier Curves, by Study Population and CKD Risk Group (Full Risk Score)

● OPERA (MDRD) ● OPERA (CG) ● OPERA (CKD-EPI) ● D:A:D Derivation (CG) ● D:A:D Self-validation (CKD-EPI)

Figure 4. Incidence Rate Ratios and 95% Confidence Intervals for the Association Between CKD Development and CKD Risk Group, with Medium Risk as the **Referent (Full Risk Score)**



● OPERA (MDRD) ● OPERA (CG) ● OPERA (CKD-EPI) ● D:A:D Derivation (CG) ● D:A:D Self-validation (CKD-EPI)

Figure 5. Adjusted* Incidence Rate Ratio and 95% Confidence Intervals for the **Association Between CKD Development and a One-Point Increase in the** Continuous CKD Risk Score (Full Risk Score)

* Modeling in the D:A:D derivation cohort was adjusted for baseline intravenous drug use, gender, hepatitis C coinfection, age, nadir CD4 count, eGFR, hypertension, prior CVD and diabetes. Models in all other cohorts were not further adjusted.

0.1

● OPERA (MDRD) ● OPERA (CG) ● OPERA (CKD-EPI) ● D:A:D Derivation (CG) ● D:A:D Self-validation (CKD-EPI)

Contact Information: 4505 Emperor Blvd, Suite 220 Durham NC 27703 P: 224-632-1863 Email: jennifer.fusco@epividian.com

DISCUSSION

- Patient demographics and clinical characteristics were similar across all 3 OPERA validation cohorts (Fig.1) but differed notably from the D:A:D derivation cohort - differences may reflect temporal, regional or healthcare system specific variation in both HIV population and/or treatment patterns
- CKD incidence varied by eGFR formula but increased according to risk strata in all 3 OPERA cohorts (Fig. 2). CKD incidence was slightly higher in all 3 OPERA cohorts than in the D:A:D derivation cohort
- Compared to the medium full risk group, being in the low risk group appeared protective (OPERA IRR for CKD ranging from 0.14 to 0.20 vs. D:A:D derivation IRR of 0.12, all with overlapping confidence intervals) and being in the high risk group appeared harmful (OPERA IRR ranging from 4.2 to 6.4 vs. D:A:D IRR of 8.1), with overlapping confidence intervals in OPERA C-G (Fig. 4)
- Harrell's c-statistic in OPERA full risk models ranged from 0.87-0.92 vs. D:A:D c-statistic of 0.92 (Table 2) suggesting that the ability to discriminate between low, medium and high risk groups was similar in both validation studies
- aIRR in OPERA full risk models ranged from 1.25 to 1.29, similar to the D:A:D alRR of 1.32, with overlapping confidence intervals in the OPERA C-G (Fig. 5)
- Similar patterns were observed using the short risk score (data not shown). The OPERA short risk score aIRR (range: 1.25-1.30) closely approximated the D:A:D short risk score aIRR (1.33), with all confidence intervals overlapping
- Sample sizes in the OPERA validation cohorts were ~10 times larger than the D:A:D self-validation cohorts, resulting in notably narrower confidence intervals
- IRR, aIRR, and c-statistics all support validation of the D:A:D CKD risk score in all three OPERA validation cohorts regardless of eGFR equation

KEY FINDING:

This study supports the validity of the D:A:D short and full risk scoring methods for assessing the probability of CKD in HIV+ patients in the United States, regardless of the eGFR equation employed. The ability to identify HIV+ patients at greatest risk for moderate to severe CKD is an essential component of clinical decision-making.

REFERENCE

1. Mocroft, A., et al., Development and validation of a risk score for chronic kidney disease in HIV infection using prospective cohort data from the D:A:D study. PLoS Med, 2015. 12(3): p. e1001809.

ACKNOWLEDGMENTS

This research would not be possible without the generosity of the OPERA HIV caregivers and their patients sharing their experiences. Additionally, we are grateful for the following individuals: Laurence Brunet (poster development), Jeffrey Briney & Robin Beckerman (SAS programmin Ted Ising (Database Arch & Mgmt), Bernie Stooks (Database Mgmt), Judy Johnson (Med Terminolog Classification), Rodney Mood (Site Support & Data Analyst)

SUPPORT

Funding for this research was provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA

2/22/18 2:45 PM

