Incidence of CKD With TDF and Non-TDF Containing Antiretroviral Regimens by Baseline D:A:D CKD Risk In People Living With HIV

Ricky Hsu, M.D.

AIDS Healthcare Foundation; NYU Langone Medical Center, New York, NY

Ricky Hsu, Laurence Brunet, Jennifer Fusco, Andrew Beyer, Girish Prajapati, Christina Wyatt, Michael Wohlfeiler, Gregory Fusco

EACS 2019

November 7, 2019

Disclosure

- ViiV Healthcare Consultant, Speaker
- Merck Speaker, Research Grants
- Gilead Consultant, Speaker, Research Grants
- Janssen Consultant, Speaker, Research Grants

Background

ART and chronic kidney disease (CKD)

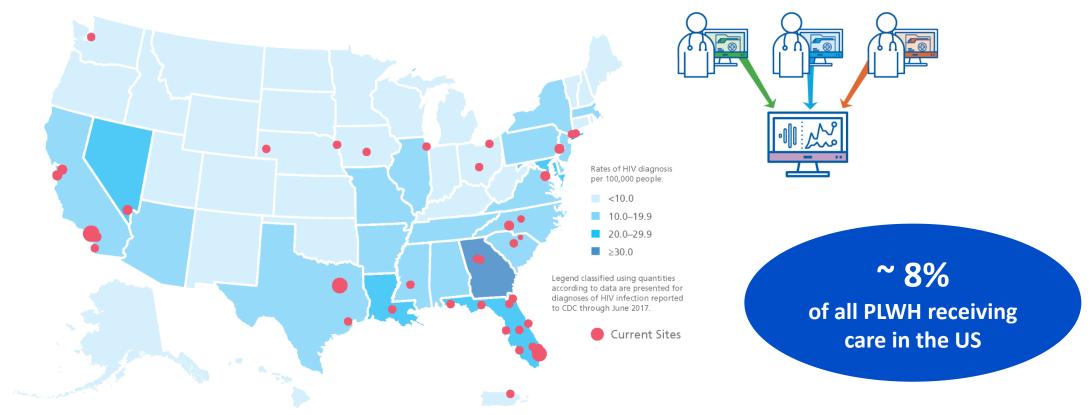
- Established association between TDF use and risk of renal impairment
 - EuroSIDA (Mocroft 2010), Veterans Health Administration (Scherzer 2012), D:A:D (Ryom 2013)
- Role of boosting agents exacerbating TDF toxicity
 - Meta-analysis of RCTs (Hill 2018)
 - Renal adverse events was not different between un-boosted TDF-regimens compared to TAF
- D:A:D CKD risk score
 - Developed in the D:A:D cohort and validated in European cohorts and in OPERA
 - Points allocated based on patient characteristics (IDU, HCV, age, eGFR, sex, nadir CD4, hypertension, CVD, diabetes)
 - CKD baseline risk categorized on D:A:D definitions (<0: Low, 0-4: Medium, 5+: High)

Objectives

Primary objective:

To assess the risk of incident CKD associated with TDF vs. non-TDF ART stratified by baseline D:A:D CKD risk score

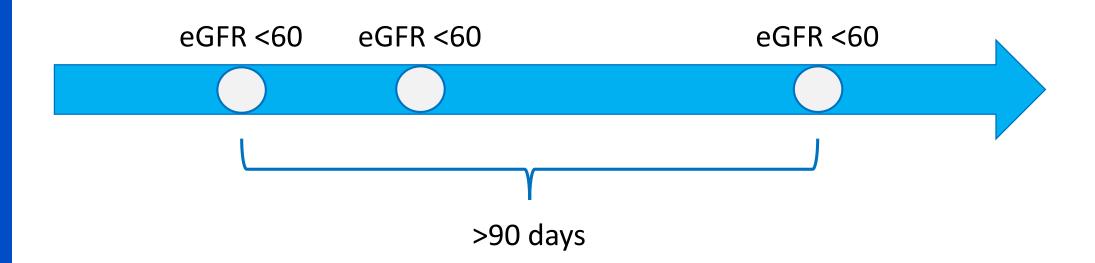
Secondary objective:


To assess the contribution of boosting agents on incident CKD risk

Methods

OPERA Cohort

- Prospectively captured, routine clinical data from electronic health records
- 100,000+ PLWH, 65 cities, 19 States, 1 US Territory


Study Population

- ART-naïve adults initiating ART by 30JUN2018
- $\geq 1 \text{ eGFR} \geq 60 \text{ ml/min/}1.73\text{m}^2 \text{ within } 12 \text{ months before initiation}$
- No dialysis, kidney transplant, end-stage liver disease, sepsis, or uncontrolled diabetes (2 consecutive HbA1c ≥6.5%)
- ≥2 eGFR measures after ART initiation
- PLWH with missing race/ethnicity excluded from statistical models

Incident CKD Assessment

- eGFR calculated with CKD-EPI equation
- ≥2 consecutive eGFR <60 ml/min/1.73m², >90 days apart

Statistical Analyses

- Incidence rates: Poisson regression
- Survival analysis: Pooled logistic regression
 - Generalized estimating equations (GEE), autoregressive correlation structure
 - Adjusted for:

Baseline: Age

Sex

Race/ethnicity

Calendar year

Boosting/anchor class

Time-updated: HIV VL <50 copies/mL

Nephrotoxic meds

Meds affecting proteinuria

Alcohol abuse

HCV

Diabetes

Hypertension

Sensitivity Analysis

 Some ARVs inhibit tubular creatinine secretion which leads to artificially low eGFR

Correction of eGFR based on average decrease in clinical trials

	Average eGFR decrease in RCTs	Correction factor
DTG ¹⁻⁴	-16.5	eGFR + 17
EVG/c 5-8	-14.2	eGFR + 14
PI/c ⁹	-10.9	eGFR + 11
RAL 1,2,10	-8.6	eGFR + 9
RPV ^{11,12}	-8.3	eGFR + 8

^{1.} Cahn et al. Lancet. 2013;382(9893):700-708.

^{2.} Raffi et al. Lancet. 2013;381(9868):735-743.

^{3.} Koteff et al. BJCP. 2013;75(4):990-996.

^{4.} Eron et al. JID. 2013;207(5):740-748.

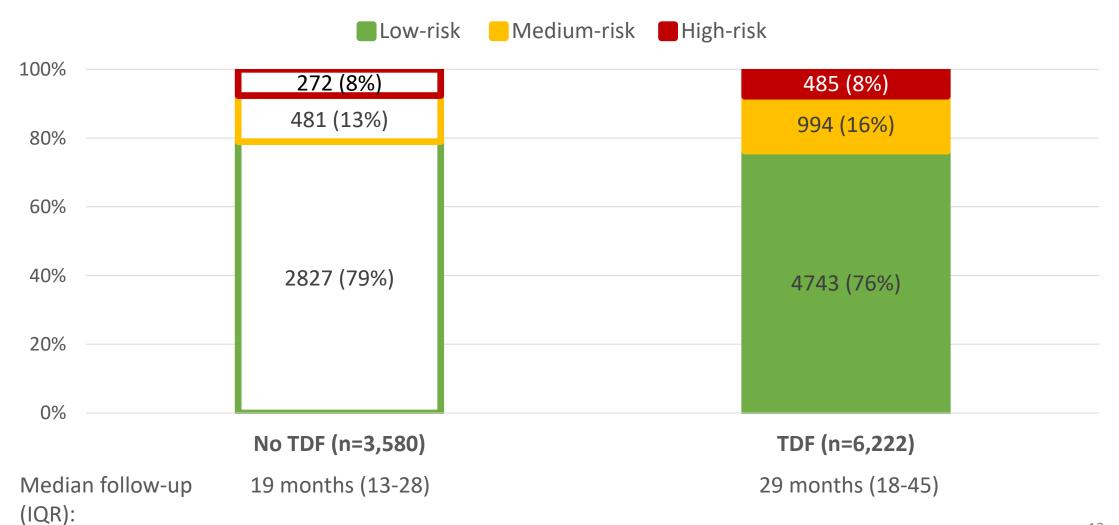
^{5.} Rockstroh et al. JAIDS. 2013;62(5):483-486.

^{6.} DeJesus et al. Lancet. 2012;379(9835):2429-2438.

^{7.} Sax et al. Lancet. 2012;379(9835):2439-2448.

^{8.} Zolopa et al. JAIDS. 2013;63(1):96-100.

German et al. JAIDS. 2012;61(1):32-40.
 Elion et al. JAIDS. Aug 01 2013;63(4):494-497.


^{11.} Molina et al. Lancet. 2011;378(9787):238-246.

^{12.} Cohen et al. Lancet. 2011;378(9787):229-237

Results Primary objective

Study Population (N = 9,802)

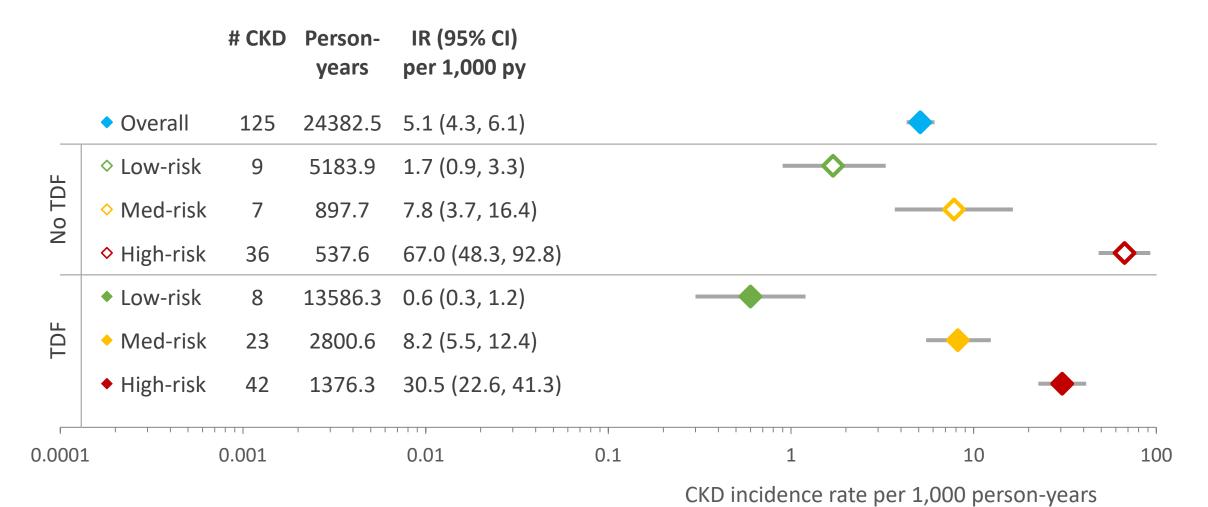
Baseline Demographic Characteristics

	No TDF			TDF		
D:A:D CKD risk strata	Low-risk N= 2,827	Medium-risk N= 481	High-risk N= 272	Low-risk N= 4,743	Medium-risk N= 994	High-risk N= 485
Age	29 (25, 35)	49 (41, 53)*	52 (47, 57)*	31 (26, 38)*	48 (41, 53)*	52 (46, 57)*
Female	254 (9%)	97 (20%)*	79 (29%)*	566 (12%)*	174 (18%)*	146 (30%)*
Race/ethnicity		*	*	*	*	*
Black non-Hispanic	1334 (47%)	205 (43%)	140 (52%)	2004 (42%)	337 (34%)	183 (38%)
Other non-Hispanic	623 (22%)	154 (33%)	84 (31%)	1283 (27%)	435 (44%)	204 (42%)
Hispanic	775 (27%)	98 (20%)	37 (14%)	1283 (27%)	171 (17%)	66 (14%)
Missing	95 (3%)	24 (5%)	11 (4%)	173 (4%)	51 (5%)	32 (7%)
Year of ART initiation	2017 (2016, 2017)	2016 (2015, 2017)*	2016 (2014, 2017)*	2013 (2011, 2014)*	2012 (2010, 2014)*	2012 (2010, 2014)*

^{*} All p < 0.0001 for the comparison with Low-Risk, No TDF

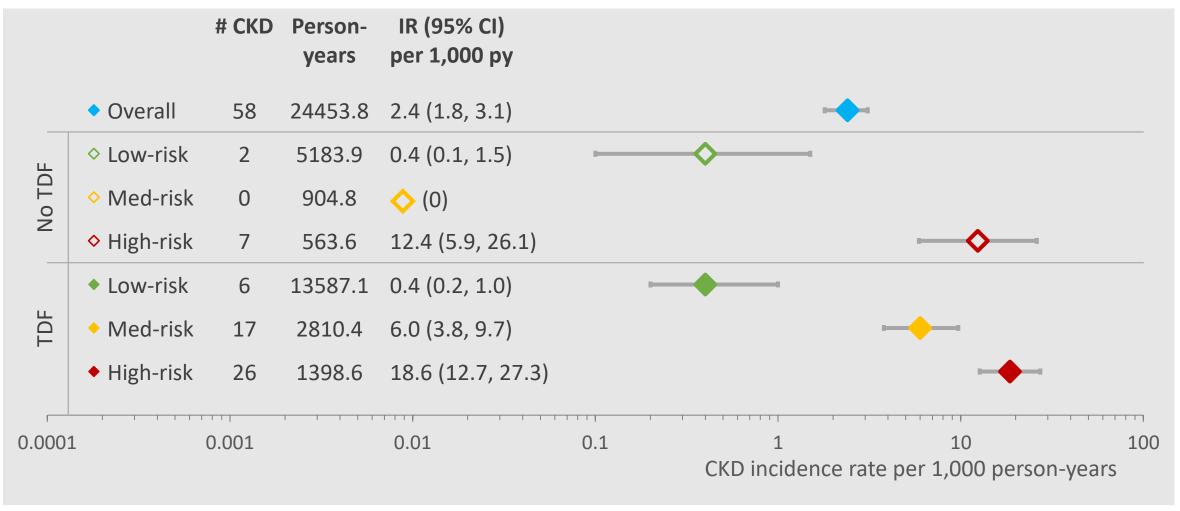
Baseline Clinical Characteristics

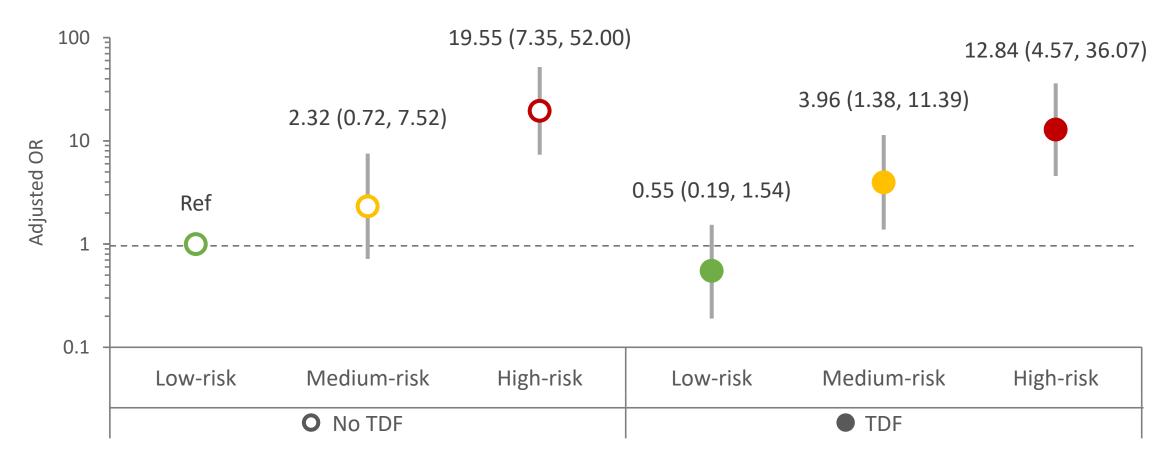
	No TDF			TDF		
D:A:D CKD risk strata	Low-risk N= 2,827	Medium-risk N= 481	High-risk N= 272	Low-risk N= 4.743	Medium-risk N= 994	High-risk N= 485
eGFR	118 (106, 128)	96 (85, 106)*	77 (69, 86)*	116 (105, 126)*	96 (85, 107)*	81 (73, 87)*
Alcohol abuse	51 (2%)	16 (3%)	6 (2%)	109 (2%)	42 (4%)*	10 (2%)
Log10 HIV viral load	4.7 (4.2, 5.1)	4.7 (4.1, 5.2)	4.8 (4.2, 5.3)*	4.7 (4.2, 5.1)	4.8 (4.2, 5.2)	4.6 (4.1, 5.0)
Nephrotoxic medication ^a	303 (11%)	82 (17%)*	47 (17%)*	838 (18%)	253 (25%)*	134 (28%)*
Medication minimizing proteinuria ^b	69 (2%)	68 (14%)*	57 (21%)*	159 (3%)	119 (12%)*	93 (19%)*
HCV co-infection	58 (2%)	44 (9%)*	29 (11%)*	112 (2%)	119 (12%)*	75 (16%)*
Diabetes	34 (1%)	49 (10%)*	40 (15%)*	34 (1%)	70 (7%)*	42 (9%)*
Hypertension	561 (20%)	202 (42%)*	157 (58%)*	1074 (23%)	383 (39%)*	252 (52%)*


^{*} p < 0.05 for the comparison with Low-Risk, No TDF

^a ATV/r, LPV/r, acyclovir, cidofovir, valacyclovir, ganciclovir, valganciclovir, dipyridamole, NSAID, probenecid

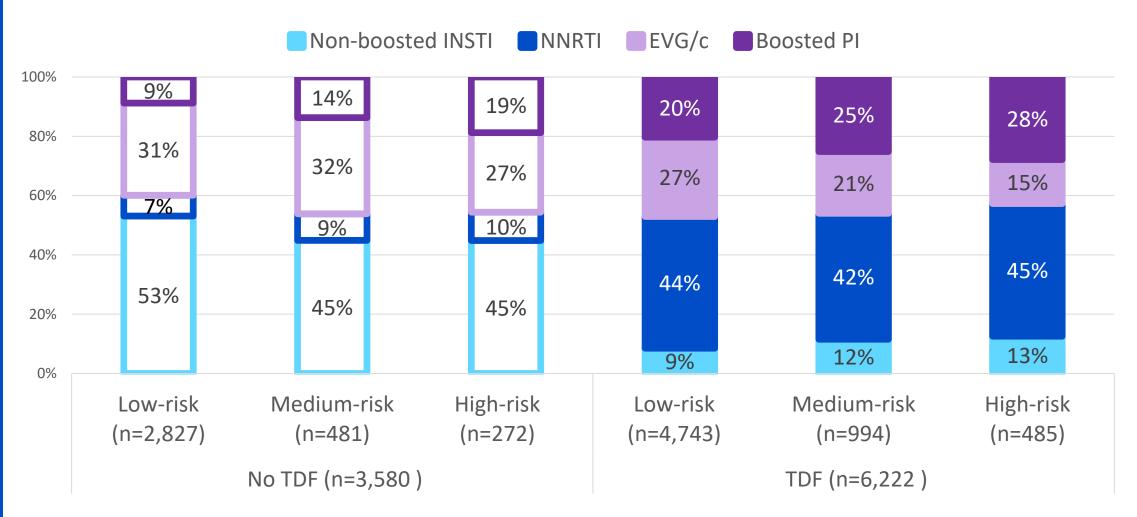
^b Ace inhibitor, Angiotensin II receptor blocker


<u>Unadjusted</u> CKD Incidence by TDF/CKD Risk

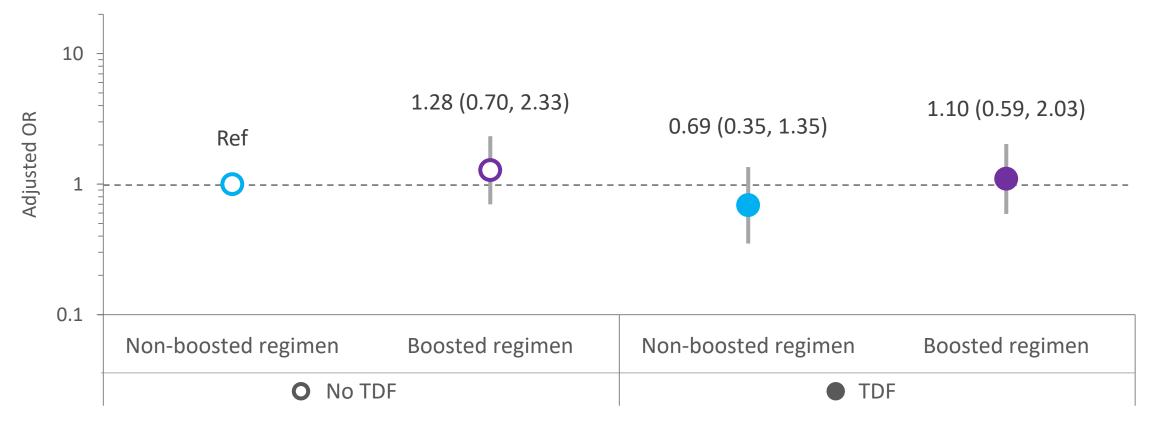

OPERA The Longitudinal Cohort

<u>Unadjusted</u> CKD Incidence by TDF/CKD Risk with eGFR correction

OPERA® The Longitudinal Cohort

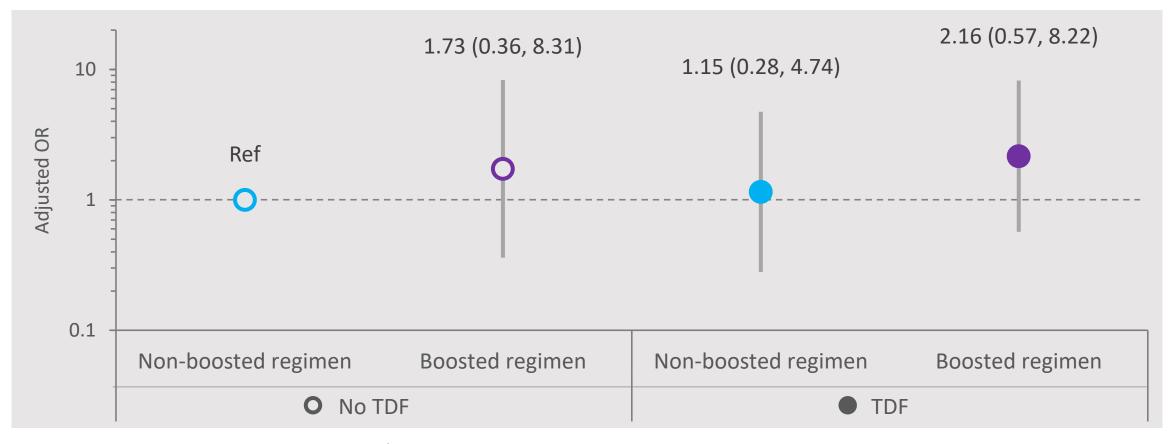

Adjusted* Association Between Incident CKD and TDF/Baseline CKD Risk

^{*} Adjusted for baseline age, sex, race/ethnicity, calendar year & boosting/anchor class, and time-updated alcohol abuse, HIV viral load, medications (nephrotoxic, affecting proteinuria), HCV, diabetes & hypertension



Study Population by TDF/Boosting

Adjusted* Association Between CKD and TDF/Boosting



^{*} Adjusted for baseline age, sex, race/ethnicity, calendar year & D:A:D risk score, and time-updated alcohol misuse, HIV viral load, medications (nephrotoxic, affecting proteinuria), HCV, diabetes & hypertension

Adjusted* Association Between CKD and TDF/Boosting with eGFR correction

^{*} Adjusted for baseline age, sex, race/ethnicity, calendar year & D:A:D risk score, and time-updated alcohol misuse, HIV viral load, medications (nephrotoxic, affecting proteinuria), HCV, diabetes & hypertension

Discussion

Key Findings (1)

- Low incidence of CKD after ART initiation in ART-naïve PLWH
- Progression to CKD strongly associated with baseline D:A:D CKD risk score
- Low baseline D:A:D CKD risk score
 - Largest group of ART-naïve PLWH (76-79%)
 - No increase in incident CKD risk with TDF in the low-risk D:A:D stratum
 - TDF may remain a viable option in PLWH with low CKD risk at initiation

Key Findings (2)

 No observed association between risk of CKD with TDF and boosted regimens

- eGFR correction
 - Reduced number of incident CKD events
 - Increased CKD incidence rates with TDF and with higher baseline D:A:D risk as expected
 - Trend towards higher risks of incident CKD with boosted regimens
 - No increase in incident CKD risk with TDF in the low-risk D:A:D stratum

Strengths

- + OPERA cohort
 - >100,000 PLWH
 - Database combining several different electronic medical records systems
 - Availability of lab results, diagnosis codes and care provider's notes
- + Large study population (N = 9,802)
- + Longer median follow-up with TDF (29 months) vs. without TDF (19 months): sufficient time to observe events in the exposed group
- + Adjusted for eGFR correction and time-updated confounders
 - Concurrent medications, incident comorbidities

Limitations

- Exclusion of PLWH missing race/ethnicity data
- Incident CKD was a rare outcome
 - Limited power to detect differences
 - Could not assess the role of ART class due to small number of events
- Limited number of CKD events after eGFR correction preventing statistical modeling

- Residual confounding
 - Confounding by indication, no adjustment for <u>duration</u> of CKD risk factors

Acknowledgements

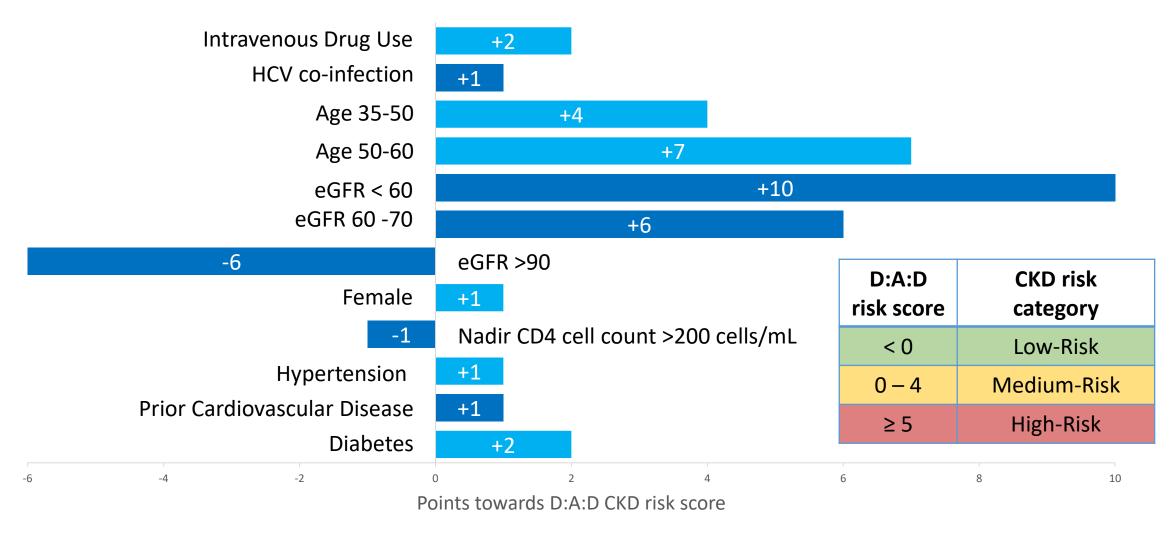
https://bit.ly/2m2nSHU

This research would not be possible without the participation of people living with HIV and their caregivers

I am grateful for the following contributions: Robin Beckerman (SAS programming), Jeff Briney (QA), Bernie Stooks (Database Arch & Mgmt), Judy Johnson (Med Terminology Classification), Rodney Mood (Site Support)

This research was sponsored by Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc.

Additional slides



Study Population

Inclusion criteria	Included	Excluded
PLWH in OPERA	94,852	-
ART-naïve, initiating ART by June 30, 2018	21,356	73,496 (77%)
≥18 years old	21,298	58 (0%)
Initial regimen: 2 NRTIs + 1 anchor agent	18,262	3,036 (3%)
No kidney transplants	18,258	4 (0%)
No ESLD	18,243	15 (0%)
No dialysis within 12 months of initiation	18,233	10 (0%)
No uncontrolled diabetes within 8 months of initiation	18,193	40 (0%)
No sepsis within 3 months of initiation	18,182	11 (0%)
≥1 eGFR within 12 months of initiation	16,293	1,889 (2%)
Last eGFR prior to ART initiation is ≥60 ml/min/1.73m ²	16,043	250 (0%)
≥2 eGFRs after ART initiation, with >90 days between the first and last eGFR	9,802	6,241 (7%)

D:A:D CKD Risk Score

