Moving More People with a Hepatitis C Diagnosis to Treatment: Alerts in CHORUS, a Clinical Decision Support System

Douglas T. Dieterich¹, Rachel Palmieri Weber², Ricky K. Hsu^{3,4}, Carl Millner⁵, Brooke Levis², Jennifer S. Fusco²,

Laurence Brunet², Annie Son⁶, Bruce Kreter⁶, Gregory P. Fusco²

Foundation, New York, NY; ⁵ AIDS Healthcare Foundation, Los Angeles, CA; ⁶ Gilead Sciences, Inc., Foster City, CA

Background

- HCV is one of the most common bloodborne pathogens in the US and the rate of incident HCV infections has increased in recent years
- Despite the availability of effective treatment with directacting antivirals, too many people with HCV infection progress to liver cirrhosis and failure

Objective

To assess whether providing alerts through CHORUS, a clinical decision support system, increases the prescription of treatment for diagnosed, untreated individuals with HCV

Methods

Study Population

- OPERA® observational cohort: Prospectively captured, routine clinical data from EHRs in the US
- o CHORUS™: A web-based CDSS that translates, transforms, and organizes EHR data into useful reports for healthcare providers
- o Inclusion criteria: 18 years of age or older with active, untreated HCV infection

Before & After Study Design

- No alerts were disseminated in the *before* period (inclusion: 16JAN2022-16AUG2022; follow-up through 17OCT2022)
- Alerts identifying individuals with diagnosed, untreated HCV were disseminated to clinics in the *after* period (inclusion: 16JAN2023-16AUG2023; follow-up through 17OCT2023)

AFTER

Alerts

- Included an individual's:
 - Date of HCV diagnosis
 - Date of last detectable HCV viral load or genotype
 - Prescriptions for prior HCV treatment

Analyses

- o Among individuals who completed a visit with a healthcare provider, the proportions of individuals prescribed HCV treatment over follow-up were described
- o Incidence rates and 95% CIs of prescriptions for HCV treatment over follow-up were estimated via univariate Poisson regression

Abbreviations

ADAP, AIDS Drug Assistance Program; CDSS, clinical decision support system; CI, confidence interval; DAA, directacting antivirals; EHR, electronic health records; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IQR, interquartile range; IR, incidence rate; mL, milliliter; n, number; py, person-years; μL, microliter; Tx, treatment; US, United States; VL, viral load

Results

Figure 1. Individuals with (dark) and without (light) ≥1 visit over follow-up

Table 1. Baseline demographic characteristics				
rabte 1. Basetine active graptine crianaleteristics	BEFORE	AFTER		
	N = 404	N = 296		
Age, median years (IQR)	48 (37, 57)	47 (37, 58)		
Female sex, n (%)	69 (17)	60 (20)		
Black race, n (%)	172 (43)	130 (44)		
Hispanic ethnicity, n (%)	88 (22)	73 (25)		
Care received in Southern US, n (%)	245 (61)	186 (63)		
Men who have sex with men, n (%)	262 (65)	173 (58)		
People who inject drugs	94 (23)	64 (22)		
Payer ^a , n (%)				
Medicaid	145 (36)	127 (43)		
Medicare	50 (12)	77 (26)		
Commercial insurance	165 (41)	164 (55)		
Cash	26 (6)	11 (4)		
ADAP/Ryan White	142 (35)	110 (37)		
Other	29 (7)	89 (30)		

^a Categories are not mutually exclusive

Table 2. Baseline clinical characteristics

	N = 404	N = 296
HCV infection		
Months since last HCV antibody test, median (IQR)	13 (5, 35)	12 (4, 28)
Months since last HCV VL test, median (IQR)	9 (3, 31)	6 (2, 17)
Individuals with prior HCV genotype test, n (%)	170 (42)	146 (49)
HIV co-infection, n (%)	388 (96)	285 (96)
Last HIV VL measurement (copies/mL), median (IQR)	20 (19, 180)	20 (19, 110)
Last CD4 cell count measurement (cells/µL), median (IQR)	544 (312, 735)	528 (338, 764)
Other clinical characteristics		
HBV co-infection, n (%)	40 (10)	30 (10)
Any comorbid condition ^a , n (%)	321 (79)	241 (81)
Number of visits in the last 12 months, median (IQR)	4 (2, 7)	4 (2, 6)

^a At least one condition in any of the following categories (ever): cardiovascular disease, invasive cancer, endocrine disorder, mental health condition, bone disorder, renal disease, hypertension, rheumatoid arthritis, or substance use

Figure 4. Incidence rates of HCV prescriptions over follow-up

Figure 2. Events over follow-up among the visit population: **BEFORE** period

Figure 3. Events over follow-up among the visit population: AFTER period

^a HIPAA regulations require the masking of cells with 1 to 5 individuals

Table 3. Description of HCV treatment

rable 3. Description of the virtual field	BEFORE	AFTER
	N = 404	N = 296
Received prescription for HCV treatment, n (%)	72 (18)	96 (32)
Specific DAA combination therapy		
Mavyret (glecaprevir/pibrentasvir), n (%)	35 (49)	47 (49)
Epclusa (sofosbuvir/velpatasvir), n (%)	27 (38) ^a	39 (41)
Harvoni (ledipasvir/sofosbuvir), n (%)	8 (11)	8 (8)
Vosevi (sofosbuvir/velspatasvir/voxilaprevir), n (%)	≤5 ^b	≤5 ^b
Zepatier (elbasvir/grazoprevir), n (%)	≤5 ^b	0
Weeks from visit to prescription, median (IQR)	4 (1, 17)	7 (<1, 19)

^a ≤5 individuals also received a prescription for ribavirin

Discussion

- There were 523 and 540 individuals with diagnosed, untreated HCV infection in the **before** and **after** periods, respectively (**Figure 1**)
 - 404 (77%) and 296 (55%), had ≥1 visit at a clinic over follow-up
- Baseline characteristics were comparable between individuals in *before* & *after* periods (Tables 1 & 2) A greater proportion of individuals in the after
- period (32%) than the **before** period (18%) received a prescription for HCV treatment over follow-up (Table 3)
 - Among 168 individuals prescribed HCV treatment:
 - All prescriptions were for DAA combination therapy
- Most (88%) received Mavyret or Epclusa Referrals for HCV management outside of the study sites, which are primary- and HIV-care focused, were not easily identified in the EHR

Confirmatory HCV viral load testing over follow-up did not occur among all individuals (Figures 2 & 3)

BEFORE

- A greater proportion of individuals in the after period (46%) than the **before** period (39%) received ≥1 HCV viral load test over follow-up
- Spontaneous clearance was identified in a greater proportion of individuals in the **before** period (30%) than in the *after* period (14%); the reason for this difference between periods is unclear
- Among 229 individuals with confirmed (still) active HCV infection, a greater proportion of individuals in the *after* period (53%) received a prescription for HCV treatment than those in the **before** period (36%)
- From the first visit over follow-up, the rate of HCV prescription was statistically significantly higher in the *after* period than in the *before* period (Figure 4)

Key Findings

- Though the incidence rate of HCV treatment nearly doubled when alerts identified individuals with untreated HCV infection, the proportion of individuals receiving treatment remains suboptimal
- Continued reminders in the CDSS over a longer period and a better understanding of referrals for HCV management outside of primary carefocused clinics may be the next steps toward successful elimination of HCV infection and transmission

Acknowledgements

This research would not be possible without the generosity of people living with HCV and their OPERA caregivers. Additionally, we are grateful for the following individuals: Kelly Oh (SAS programming), Lito Torres (QA), Bernie Stooks & Stephen Connellee (Data architecture), Lisa Lutzi & Nicole Shaw (Data management and quality), and Judy Johnson (Clinical data categorization).

Support

Gilead Sciences, Inc.

b HIPAA regulations require the masking of cells with 1 to 5 individuals